GET ASSURED A++ GRADE IN EACH PEARSON HIGHER NATIONAL CERTIFICATE/DIPLOMA IN CONSTRUCTION AND THE BUILT ENVIRONMENT ASSIGNMENT ORDER - ORDER FOR ORIGINALLY WRITTEN SOLUTIONS!

Qualification - Higher National Certificate/Diploma in Construction and the Built Environment

Unit Name - Mathematics for Construction

Level - Level 4

Assignment Title - Building Mathematics

Unit Number - Unit 8

Learning Outcome 1: Identify the relevance of mathematical methods to a variety of conceptualised construction examples

Learning Outcome 2: Investigate applications of statistical techniques to interpret, organise and present data by using appropriate computer software packages

Learning Outcome 3: Use analytical and computational methods for solving problems by relating sinusoidal wave and vector functions to their respective construction applications.

Learning Outcome 4: Illustrate the wide -ranging uses of calculus within different construction disciplines by solving problems of differential and integral calculus

Scenario
You are employed by a large design and build contractor , as a design build technician. Your supervisor has recognised that this mathematical unit would benefit and support you both in terms of completing your Higher National studies but also in understanding how mathematical techniques could be applied to varying construction situations.

Your supervisor also reconises that some advanced mathematical techniques will be needed in future studies and therefore has developed a series of tasks to support you in the understanding of techniques included within tasks are advanced , it is hoped that all tasks will be attempted.

Assignment Brief

Scenario 1

You have been contracted as a mathematical consultant to solve and confirm a number of mathematical problems/solutions for projects on a major contract

1. A building services engineer is to design a water tank for a project. The tank has a rectangular area of 26.5m2. With the design specifics of the width being 3.2m shorter than the length, calculate the length and width to 3 significant figures for resourcerequirements.

2. As an employee of company JR construction you have received a letter regarding the project your company is working on. It has a penalty clause that states the contactor will forfeit a certain some of money each day for late completion. (i.e. the contractor gets paid the value of the original contract less any sum forfeit). If she is 5 days late she receives £4250 and if she is 12 days late she receives £2120. Calculate the daily forfeit and determine the original contract.

HIRE PROFESSIONAL TUTORS FROM MIRACLESKILLS.COM AND GET BEST QUALITY UNIT 8 MATHEMATICS FOR CONSTRUCTION ASSIGNMENT HELP AND HIGHER NATIONAL CERTIFICATE/DIPLOMA IN CONSTRUCTION AND THE BUILT ENVIRONMENT ASSESSMENT HELP SERVICES!

Scenario 2
You have asked to convert various dimensional parameters using the following table

(a)
(i) In fluid dynamics the formula for drag force is given by FD = ½ρ u2 CD A
where
FD is Drag Force
ρ is density u is velocity
CD is drag coefficient and A is area
Show that this equation is dimensionally correct.

(ii) The power P delivered to a pump depends on the specific weight w of the fluid pumped, the height h to which the fluid is pumped, and the fluid flow rate q. Use dimensional analysis to determine an equation for power. Below are the listed dimensions.

(b)

Determine the units of the lift produced by an aircraft wing. The lift is directly proportional the product of the air density, the air speed over the wing and the surface area of the wing.
Lift = k x ρ xV 2 x A
A = Area of the wing in meter2
ρ = Air density in Kg/meter3
A = Area of the wing k has no dimensions

Scenario 3
You have asked to investigate the following arithmetic sequences
1. An arithmetic sequence is given by b, 2b/3, b/3, 0.......
• Determine the sixth term
• State the kth term
• If the 20th term has value of 15 find the value of b and the sum of the first 20 terms

2. For the following geometric progression 1, 1 , 1 determine
2 4
• The 20th term of the progression

• The value of the sum when the number of terms in the sequence tends to infinity and explain why the sequence tends to this value Sn = ∑n=0n→∞ arn

3. Solve the following Equations for x : (a) 2Log (3x) + Log (18x) = 27
(b) 2LOGe(3x) + LOGe(18x) = 9
(c) Solve the following Hyperbolic Equations for the variables involved:
(i) Cosh(X) + Sinh(X) = 5
(ii) Cosh(2Y) - Sinh(2Y) = 3
(iii) Cosh(K) * Sinh(K) = 2
(iv) Cosh(M) / Sinh(M) = 2

Access Reliable MLK 510 Unit 35 Further Analytical Methods for Engineers Assignment Help and UK Tutor Services for Your BTEC Level 5 HND in Engineering!

Scenario 1

You have been asked to investigate the following data for a large building services company

Revenue Number of customers

Number of customers January July

Less than 5 27 22

5 and less than 10 38 39

10 and less than 15 40 69

15 and less than 20 22 41

20 and less than 30 13 20

30 and less than 40 4 5

a) Produce a histogram for either of the distributions scaled such that the area of each rectangle represents frequency density and find the mode.

b) Produce a cumulative frequency curve for each of the distributions and find the median, and interquartile range.

c) For each distribution find the:
• the mean
• the range
• the standard deviation

Scenario 2

(A) In the new Epiphyte Engineering factory 5000 light bulbs Type A are installed. Their lengths of life are normally distributed with a mean of 360 days and a standard deviation of 60 days.

a) If it is decided to replace all bulbs at one specified time, what interval must be allowed between replacements if not more than 10% of bulbs should fail beforereplacement?

b) What practical considerations might dictate such a replacement policy?
c) The supplier offers a new type of bulb, Type B, that has a mean life of 450 days and the same standard deviation (60 days) as the present type. If these bulbs were to be used how wouldthe replacement time be affected?

d) Determine whether the new type of bulb is preferable given that is costs 25% more than the existing Type A. Present and explain your conclusions.

f) A rival supplier now offers a third type of bulb, Type C, that has a mean life of 432 days and a standard deviation of 45 days. If these bulbs were to be used how would the replacement timebe affected?

How should the Type C bulb compare for costs if it is to be adopted? Present and explain your conclusion.
(B) A simple random sample of 10 people from a certain population has a mean age of 27 years. Can we conclude that the mean age of the population is not 30 years? The variance of the populate ages is known to be 20. Test your chosen hypothesis at a 5% level of significance using both a two tailed test and a one tailed test and explain your conclusions.
L03 Use analytical and computational methods for solving problems by relating sinusoidal wave and vector functions to their respective construction applications

Scenario 1

A support beam, within an industrial building, is subjected to vibrations along its length; emanating from two machines situated at opposite ends of the beam. The displacement caused by the vibrations can be modelled by the following equations.
x1 = 3.75 sin (100Πt + 2Π/9)

??2 = 4.42 sin (100Πt - 2Π/ 5 )

i. State the amplitude, phase, frequency and periodic time of each of these waves.

ii. When both machines are switched on, how many seconds does it take for each machine to produce its maximum displacement?

iii. At what time does each vibration first reach a displacement of-2?????

iv. Use the compound angle formulae to expand ??1and ??2 into the form A sin 100Πt ± B cos 100Πt, where A and B are numbers to be found.
v. Using your answers from part iv, express x1 + x2 in a similar form. Convert this expression into the equivalent form Rsin(100Πt + ∝).

Scenario 2

A pipeline is to be fitted under a road and can be represented on 3D Cartesian axes as below, with the x- axis pointing East, the y-axis North, and the z-axis vertical. The pipeline is to consist of a straight section AB directly under the road, and another straight section BC connected to the first. All lengths are in metres.

i. Calculate the distance AB.

The section BC is to be drilled in the direction of the vector 3i+ 4j+ k

ii. Find the angle between the sections AB and BC.
The section of pipe reaches ground level at the point (a,b,0).

iii. Write down a vector equation of the line BC. Hence find a and b.

MOST ACCURATE & TRUSTWORTHY UNIT 8 MATHEMATICS FOR CONSTRUCTION - HIGHER NATIONAL CERTIFICATE/DIPLOMA IN CONSTRUCTION AND THE BUILT ENVIRONMENT ASSIGNMENT HELP SERVICE!

SCENARIO 1
You have asked to investigate the following :

(a i) Plot the bending moment and determine where the bending moment is zero .
(a ii) Investigate and state the range of values where the above Bending Moment Function ls maximum or Minimum, decreasing or increasing or neither.

(b) Determine the range of the temperature for positive t

(c) Note that in the thermodynamic system provided herein, the expression given is equated to 0 to solve the problem given to be solved.

Also determine the rate of change of V when P changes at regular intervals of 10 N/mm2 from 60 to 100N/m2 and the variable n=2.

Get Expert Assistance with Unit 8: Maths for Construction Problems for Your HNC in Construction and the Built Environment!

Scenario 2

Righton Refrigeration specialises in the production of environmental engineering equipment. The cost of manufacture for a particular component, £C, is related to the production time (t)minutes, by the following formula
C=16t-2+2t-
Investigate the variation of cost over a range of production times from 1 minute to 8 minutes:

a) Plot the cost function over the given range
b) Explain how calculus may be used to find an analytical solution to this problem of optimisation.
c) Use calculus to find the production time at which the cost is at a turningpoint.
d) Show that the turning point is a mathematicalminimum.
Discuss whether there would still be a minimum cost of production.

Scenario 3
The heat flow within a building is increasing or decreasing exponentially E to power 3t in line with temperature difference which is t degrees ( C) with the outside surroundings.
Estimate and explore the growth rate graphically when the temperature difference changes from - 20degrees to + 20 degrees (C)

ACHIEVE HIGHER GRADE WITH ACQUIRING UNIT 8 MATHEMATICS FOR CONSTRUCTION ASSIGNMENT HELP SERVICES OF MIRACLESKILLS.COM

Get Expert N5E08 Mathematics for Construction Assignment Help and UK Tutor Services for Your HND at an Affordable Price!

RELATED COURSES & ASSIGNMENT SERVICE!!

 Introduction to Finance Assignment Help BTEC Higher National Diploma in Business - Marketing Assignment Help Computer Programing Assignment Help BTEC Higher National Diploma in Business Assignment Help BTEC Level 2 Diploma Creative Design (Photography) Assignment Help Business Legislation Assignment Help Critical Analysis Assignment Help Safeguarding health and safety throughout construction projects Financial Management Assignment Help, Diploma in Business Sales Management Assignment Help Organisational Behaviour Assignment Help Unit 14 Strategic Supply Chain Management and Logistics Assignment Help

#### Are You Looking for Mathematics for Construction Assignment Help?

Access our Higher National Certificate/Diploma in Construction and the Built Environment Assignment Help Services for its related units such as:-

• Unit 1 Individual Project (Pearson-set) Assignment Help
• Unit 2 Construction Technology Assignment Help
• Unit 3 Science & Materials Assignment Help
• Unit 4 Construction Practice & Management Assignment Help
• Unit 8 Mathematics for Construction Assignment Help
• Unit 9 Principles of Heating Services Design & Installation Assignment Help
• Unit 10 Principles of Ventilation & Air-conditioning Design & Installation Assignment Help
• Unit 6 Construction Information Assignment Help