Task 1: (LO2.1)
Part 1 -
Solution -
The value of R for maximum power to the load
As per the Thevenin theorem -
For finding the Thevenin equivalent resistance -
R_TH=7||(4+j15)
R_TH=7*(4+j15)/(11+j15)=(28+j105)/(11+j15)=5.4422+j2.1243 ohm
For maximum power transfer -
R_TH=R_L
R_TH=5.4422+j2.1243 ohm
R_L=R_0-j0.8
5.4422+j2.1243=R_0-j0.8
R_0=5.4422+j2.1243+j0.8
R_0=5.4422+j2.9243 ohm
Now the Thevenin Voltage -
V_TH=V_S*(4+j15)/(7+4+j15)
V_S=120 ∠40=91.925+j77.1345 V
So that,
V_TH=(91.925+j77.1345)*(4+j15)/(7+4+j15)
V_TH=(91.925+j77.1345)*(4+j15)/(11+j15)
V_TH=48.06+j87.865 V
The maximum power transferred in the load -
P_max=((V_TH^2)/(4R_L )) watts
P_max=((48.06+j87.865)^2/4(5.4422+j2.1243) )
P_max=((48.06+j87.865)^2/4(5.4422+j2.1243) )=((-5410.49+j8445.58))/(21.7688+j8.4972)
P_max=-84.265+j420.859 watts
P_max=429.2124 ∠101.32° watts
Part 2 -
Solution -
Start from the Thevenin conversion -
Equivalent Resistance or Thevenin resistance -
R_TH=(2+j3)||(1+j2)
R_TH=[(2+j3)*(1+j2) ]/(3+j5)
R_TH=(-4+j7)/(3+j5)=0.67647+j1.2
Equivalent Voltage or Thevenin voltage -
I=((10∠0-5∠0))/((3+j5) )=5/(3+j5)
I=0.4411-j0.735 A
Now,
V_TH=10-(2+j3)I
V_TH=10-(2+j3)(0.4411-j0.735)
V_TH=10-3.0872-0j.1467
V_TH=6.9128-j0.1467
V_TH=6.91435 ∠-1.2157° V
Thevenin equivalent circuit -
The current
I_TH=(6.9128-j0.1467)/((0.67647+j1.2)+(2-j3) )=1.8038+j1.1583 A
I_TH=2.1436∠37.7° A
Now Thevenin equivalent circuit can be given as thevening resistance in series with load resistance and driven by thevenin voltage.
Now Thevenin to Norton Conversion -
Norton resistance -
R_N=R_TH= 0.67647+j1.2 ohm
Norton current -
I_N=V_TH/R_TH =(6.9128-j0.1467)/(0.67647+j1.2)
I_N=2.37154-j4.4237 A
I_N=5.02∠-61.80° A
Norton equivalent circuit -
Current in the load across AB -
R_AB=2-j3 ohm
I_AB=((0.67647+j1.2))/((0.67647+j1.2+2-j3) )*I_N
I_AB=(-0.03359+j0.42576)*(2.37154-j4.4237) A
I_AB=1.80378+j1.1583 A
I_AB=2.1436 ∠32.7065° A
Hence the current in the load AB is determined by Norton and also its verified by the Thevenin theorem.
Now,
Power dissipated in the load -
P_AB=I_AB^2*R_AB
P_AB=(2.14)^2*(2) watts
P_AB=9.1592 Watts
Opportunity of merits -
Part 1 -
Solution -
The value of R for maximum power to the load
The alternate Norton theorem -
As per the Thevenin theorem -
R_TH=7||(4+j15)
R_TH=7*(4+j15)/(11+j15)=(28+j105)/(11+j15)=5.4422+j2.1243 ohm
And
V_S=120 ∠40=91.925+j77.1345 V
Thevenin to Norton conversion -
V_TH=48.06+j87.865 V
R_TH=5.4422+j2.1243 ohm
Norton current -
I_N=V_TH/R_TH =(48.06+j87.865 )/(5.4422+j2.1243) A
I_N=13.1321+j11.019 A
I_N=17.1428 ∠40° A
And
R_TH=R_N
So the Norton circuit -
For maximum power transfer -
R_TH=R_L
R_TH=5.4422+j2.1243 ohm
R_L=R_0-j0.8
5.4422+j2.1243=R_0-j0.8
R_0=5.4422+j2.9243 ohm
The maximum power transferred in the load -
P_max=((V_TH^2)/(4R_L )) watts
P_max=((48.06+j87.865)^2/4(5.4422+j2.1243) )
P_max=((48.06+j87.865)^2/4(5.4422+j2.1243) )=((-5410.49+j8445.58))/(21.7688+j8.4972)
P_max=-84.265+j420.859 watts
P_max=429.2124 ∠101.32° watts
Part 2 -
Solution -
By the alternate Thevenin theorem -
Equivalent Resistance or Thevenin resistance -
R_TH=(2+j3)||(1+j2)
R_TH=[(2+j3)*(1+j2) ]/(3+j5)
R_TH=(-4+j7)/(3+j5)=0.67647+j1.2
I=((10∠0-5∠0))/((3+j5) )=5/(3+j5)=0.4411-j0.735 A
Now,
V_TH=10-(2+j3)I=10-(2+j3)(0.4411-j0.735)
V_TH=6.9128-j0.1467
V_TH=6.91435 ∠-1.2157° V
Thevenin current
I_TH=(6.9128-j0.1467)/((0.67647+j1.2)+(2-j3) )=1.8038+j1.1583 A
I_TH=2.1436∠37.7° A
The picture above shows the Thevenin equivalent of the circuit.
Here the voltage 6.91435 V is the Thevenin voltage and 1.8+j1.15 or 2.1436 A is current flowing through the loop. The 0.67647+j1.2 is the equivalent Thevenin resistance and 2-j3 is the load resistance between A and B.
By considering the Thevenin equivalent, the circuit can be easily analysed.
Current in the load across AB -
R_AB=2-j3 ohm
I_AB=2.1436 ∠32.7065° A
Power dissipated in the load -
P_AB=I_AB^2*R_AB
P_AB=(2.1436)^2*(2) watts
P_AB=9.1592 Watts
Task 2: (LO2.2)
To determine the currents I1, I2 and I3 -
By Superposition theorem -
frequency=1 kHz
For
L_2: jωL_2=j*2πfL_2=j*2*3.14*1000*2.7*?10?^(-3)
jωL_2=j16.956 ohm
L_1: jωL_1=j*2πfL_1=j*2*3.14*1000*1.2*?10?^(-3)
jωL_1=j7.536 ohm
C_1:1/( jωC_1 )=1/(j*2πfC_1 )=1/(j*2*3.14*1000*5*?10?^(-6) )
1/( jωC_1 )=-j31.847133 ohm
Z_1=R_1+X_L1=9+j16.956
Z_2=R_2+X_L2=15+j7.536
Z_3=R_3+X_C1=18-j31.847
Now consider only voltage V1=10 V -
The equivalent resistance will be -
R_eq=(9+j16.956)+[(15+j7.536)||(18-j31.847) ]
R_eq=(9+j16.956)+[(15+j7.536)(18-j31.847)/(33-j24.311)]
R_eq=(9+j16.956)+[(15+j7.536)(18-j31.847)/(33-j24.311)]
R_eq=(9+j16.956)+14.9675+j0.66
R_(eq,1)=23.97+j17.617 ohm
Then
I_1^'=V_1/R_(eq,1)
I_1^'=10/(23.97+j17.617) ohm
I_1^'=0.27088-j0.2 A
And then after current division -
I_2^'=((18-j31.847))/((18-j31.847+15+j7.536) )*(0.27088-j0.2)
I_2^'=0.1476-j0.2618 A
And
I_3^'=I_1^'-I_2^'=0.12328+j0.0618 A
Now consider only voltage V2=10 V -
The equivalent resistance will be -
R_eq=(15+j7.536)+[(9+j16.956)||(18-j31.847) ]
R_eq=(15+j7.536)+[(9+j16.956)(18-j31.847)/(27-j14.89)]
R_eq=(15+j7.536)+(19.6455+j11.5225)
R_(eq,2)=34.6448+j19.0588 ohm
Then
I_2^''=V_2/R_(eq,2)
I_2^''=10/(34.6448+j19.0588)
I_2^''=0.22158-j0.12189 A
After the current division -
I_1^''=((18-j31.847))/((18-j31.847+9+j16.956) )*(0.1755-j0.1745)
I_1^''=0.1479-j0.261
And
I_3^''=I_2^''-I_1^''=0.0736+j0.13915 A
Now finally after the effect of superposition -
I_1=I_1^'+I_1^''=0.27088-j0.2-0.1479+j0.261=0.12298-j0.061 A
I_1=0.1372 ∠26.38° A
I_2=I_2^'+I_2^''=0.1476-j0.2618-0.22158+j0.12189=-0.0739-j0.1398 A
I_2=0.1582 ∠-117.86° A
I_3=I_3^'+I_3^''=0.12328+j0.0618+0.0736+j0.13915=0.25868-j0.13915 A
I_3=0.2937 ∠28.276° A
Opportunity of merits -
Nodal analysis -
At node VX -
(V_X-10)/(9+j16.956)+(V_x-10)/(15+j7.536)+V_x/(18-j31.847)=0
V_X [1/(9+j16.956)+1/(15+j7.536)+1/(18-j31.847)]=[10/(9+j16.956)+10/(15+j7.536)]
V_X=(10*[1/(9+j16.956)+1/(15+j7.536)])/[1/(9+j16.956)+1/(15+j7.536)+1/(18-j31.847)]
V_X=(10*[1/(9+j16.956)+1/(15+j7.536)])/[1/(9+j16.956)+1/(15+j7.536)+1/(18-j31.847)]
V_X=(10*[0.077654-0.072756])/[0.077654-0.072756+0.01345+j0.0238]
V_X=(10*[0.077654-0.072756])/[0.0911-0.049] =9.9436-j2.6425 V
V_X=10.288∠-14.88
The currents in the branches -
I_1=(10-9.9436+j2.6425)/(9+j16.956)=0.1230 + j0.0619 A
I_1=0.1377 ∠26.71° A
I_2=(10-9.9436+j2.6425)/(15+j7.536)= 0.0737 +j 0.1392
I_2=0.1575 ∠62.10° A
I_3=(9.9436-j2.6425)/(18-j31.847)=0.1966+j0.2011 A
I_3=0.2812 ∠45.6483° A
Mesh analysis -
Loop 1 -
10=I_1 (9+j16.956)+(I_1-I_2 )(18-j31.847)
10=I_1 (9+j16.956+18-j31.847)+(-I_2 )(18-j31.847)
10=I_1 (27-j14.891)+(-I_2 )(18-j31.847)
Loop 2 -
-10=I_2 (15+j7.536)+(I_2-I_1 )(18-j31.847)
-10=(-I_1 )(18-j31.847)+I_2 (33-j24.311)
Now solve for the equations -
From 1st equation -
[10+I_2 (18-j31.847) ]/((27-j14.891) )=I_1
Then put I1 in the 2ndequation -
-10=-I_1 (18-j31.847)+I_2 (33-j24.311)
-10=-[[10+I_2 (18-j31.847) ]/((27-j14.891) )](18-j31.847)+I_2 (33-j24.311)
-10+[[10+I_2 (18-j31.847) ]/((27-j14.891) )](18-j31.847)=I_2 (33-j24.311)
-10+ 10(18-j31.847)/(27-j14.891)+[(I_2 (18-j31.847))/((27-j14.891) )](18-j31.847)=I_2 (33-j24.311)
-10+10.099-j6.225=I_2 [(33-j24.311)+1.645+j43.37]
0.099-j6.225=I_2 [34.645+j19.059]
((0.099-j6.225))/[34.645+j19.059] =I_2
I_2=-0.07368-j0.13914
I_2=0.15745∠-117.90° A
And
[10+I_2 (18-j31.847) ]/((27-j14.891) )=I_1
[10+(-0.07368-j0.13914)(18-j31.847) ]/((27-j14.891) )=I_1
I_1=0.1229-j0.06196
I_1=0.13768 ∠26.74° A
And then
I_3=I_1+I_2
I_3=0.29513∠-91.16° A
Opportunity for distinction -
Simulated results -
The voltages V1, V2 and VX -
The current I1 -
The current I2 -
The current I3 -
Comparison table -
Analysis Method
|
I1
|
I2
|
I3
|
Mesh
|
0.13768 ∠26.74°
|
0.1574∠-117.90°
|
0.29513∠-91.16°
|
Nodal
|
0.13775 ∠-26.75°
|
0.15745 ∠62.10°
|
0.281∠45.64°
|
Superposition
|
0.1372 ∠26.38
|
0.1582 ∠-117.86°
|
0.2937 ∠28.276°
|
Simulated
|
140 mA
=0.140 A
|
160 mA
= 0.160 A
|
280 mA
= 0.280 A
|